

Brass and bronze fittings - Conex Compression series

IBP Instalfittings Sp. z o.o.

ISSUANCE DATE VALIDITY DATE

28/11/2024 28/11/2029

Basic information

This declaration is a Type III Environmental Product Declaration (EPD) based on the EN 15804 standard and verified according to ISO 14025 by an independent auditor.

It contains information about the environmental impact of the declared construction materials. These aspects have been verified by an independent body in accordance with ISO 14025. In principle, a comparison or evaluation of EPD data is only possible if all data to be compared have been created in accordance with EN 15804 (see section 5.3 of the standard).

EPD OWNER	IBP Instalfittings Sp. z o.o. Stanisława Zwierzchowskiego 29 Street, 61 - 249 Poznań, Poland www.ibpgroup.com.pl
PROGRAMME OWNER	Instytut Techniki Budowlanej (ITB) Filtrowa 1 Street, 00 - 611 Warsaw, Poland e-mail: energia@itb.pl, www.itb.pl
LCA ANALYSIS	A1 - A3, A4, C1 - C4 and D according to EN 15804 (cradle to gate with options)
YEAR OF EPD DEVELOPMENT	2024
DECLARED SERVICE LIFE	25 years
PCR	ITB-PCR A document (based on PN-EN 15804)
DECLARED UNIT	1 kg of product
REASON FOR IMPLEMENTATION	B2B
REPRESENTATIVENESS	Global products, 2023

ITB cooperates with other operators of EPD programmes through the ECO-PLATFORM, (http://www.eco-platform.org/) in order to coordinate efforts to support industrial sectors while reducing verification efforts in different countries.

Manufacturer

Conex Bänninger is a world leader in fittings used for copper, carbon steel, plastic and stainless steel pipes.

The company's comprehensive product range consists of plumbing fittings and valves for domestic, commercial and industrial applications, working with customers in the plumbing, heating, ventilation, gas, refrigeration and medical industries.

All products covered in this study are manufactured and/or stocked at the following production facilities: the IBP Instalfittings plant at Stanisława Zwierzchowskiego 29 Street in Poznań (Poland), the IBP Instalfittings plant at Za Motelem 2A Street in Sady/Tarnowo Podgórne (Poland), the IDC Fluid Control Co. plant in Yuhuan (China), the IBP ATCOSA plant, Poligono Industrial, Quintos-Aeropuerto in Cordoba (Spain), the Conex Universal Limited plant, Global House 95 Vantage Point, Pensnett Trading Estate in Kingswinford (UK).

Fig. 1. IBP Instalfittings plant at Stanisława Zwierzchowskiego Street 29 in Poznań (Poland)

Fig. 2. IBP Instalfittings plant at Za Motelem Street 2A in Sady/Tarnów Podgórny (Poland)

Fig. 3. IBP ATCOSA plant, Poligono Industrial, Quintos-Aeropuerto in Cordoba (Spain)

Products description and application

Fittings Conex Compression series belong to the group of metallic sealed connections and are manufactured from brass (brass material numbers are CW511L-DW and CW617N-DW) and bronze (CC499K-DW). Rings and caps are also manufactured from brass. Conex fittings are available in sizes from 6 mm to 108 mm. The fittings are used in heating, sanitary, water, solar, compressed air, stream and seawater installations. They are used for new installations as well as for repairs and retrofits. They can not be used for gas installations. The fittings have high tensile strength, are resistant to corrosion and have durable metal seals. Specialized tools are not required for assembly, a simple open-ended or adjustable spanner would be sufficient.

The table shows the range of brass fittings.

Picture	Fitting type	Code	Dimensions
	Straight Coupler	301	from 6 to 54
	Straight Coupler	301	from 67 to 108
	Reduced Straight Coupler	301	from 8 x 6 to 35 x 28
	Straight Coupler Bulkhead	301ВН	from 15 to 22

Slip Coupler Burst Tube Repair	301BP	from 12 to 22
Imperial to Metric Straight Coupler	301ІМ	76 x 3″
Crossover	301CO	from 15 to 22
Male Straight Coupler	302	from 6 x 1/8" to 108 x 4"
Male Straight Connector with Back Nut	302В	from 15 x 1/2" to 76 x 3"
Extended Male Straight Connector with Back Nut	302CB	from 15 x 1/2 x 38 to 22 x 3/4 x 38
Male Straight Connector	302ТА	from 10 x 3/8" to 28 x 1"

	Female Straight Connector	303	from 8 x 1/4" to 76 x 3"
	Straight Tap Connector Max 60 °C	303SF	from 15 x 1/2" to 22 x 3/4"
The	Tank Connector	321	from 15 to 54
	Female Straight Connector for Pillar Taps	303ST	from 15 to 22
	Stop End	323	from 8 to 54
	Elbow	401	from 6 to 76
	Reduced Elbow	401	from 12 x 10 to 28 x 22

Elbow with Drain Tap	401DA	from 15 to 28
Obtuse Elbow	401/0	from 15 to 28
Slow Bend	4018	from 15 to 28
Elbow with Air Vent	401V	from 15 to 22
Male Elbow with Drain Tap	402DA	22 x 3/4″
Extended Male Elbow with Back Nut	403CB	from 15 x 1/2" x 38 to 22 x 1/2" x 38
Male Elbow	402	from 8 x 1/4" to 67 x 2 1/2"

	Male Elbow Taper	402TA	from 10 x 1/2" to 28 x 1"
	Female Elbow	403	from 8 x 1/4" to 54 x 2"
	Female Wall Plate Elbow 2 Hole	403W	from 12 x 1/2" to 15 x 1/2"
	Female Wall Plate Elbow 3 Hole	403WL	from 10 x 1/2" to 28 x 1"
000	Bent Tap Connector	403SF	from 15 x 1/2" to 22 x 3/4"
	Equal Tee	601EQ	from 6 to 76
	Tee Reduced Branch	601RB	from 15 x 15 x 10 to 76 x 76 x 54

Three-way Equal Tee	601C	from 15 x 15 x 15 to 22 x 22 x 22
Tee Reduced End	601RE	from 12 x 12 x 12 to 28 x 22 x 28
Tee Reduced End and Branch	601REB	from 15 x 12 x 12 to 28 x 22 x 22
Tee Reduced Both Ends	601REE	from 15 x 15 x 22 to 22 x 22 x 28
Tee with Male Branch	615	from 15 x 1/2" x 15 to 22 x 3/4" x 22
Tee with Female Branch	617	from 12 x 12 x 3/8" to 28 x 28 x 1"
Tee with Male End	631	from 15 x 1/2" x 15 to 22 x 3/4" x 22

Tee with Male and Female Ends	645	1/2 x 1/2 x 15
Tee with Female End	684	from 15 x 1/2" x 15 to 28 x 1" x 28
Cross - Equal	901	from 15 x 15 x 15 x 15 to 22 x 22 x 22 x 22
Capnut	63	from 6 to 54
Blank Capnut	63B	from 8 to 54
Compression Ring (Imperial)	65	from 3/4" to 3"
Compression Ring	65	from 6 to 108

70	Air Vent	63V	15
Oce	Internal Reducer	\$68	from 10 x 8 to 76 x 54
-	Internal Reducer	68\$	8 x 6
CEO.	Male to Female Adaptor	S68SP	from 10 x 8 to 35 x 28
	Metric to Imperial Adaptor Ring	\$68S	from 42 mm x 1 1/2" to 108 x 4"
	Male to Female Adaptor	72	from 1/2" to 3/4"
	Adaptor for Tap Extension	74	3/4"

1	External Reducer	G68E	76 x 54
	Blank Piece	S61	from 8 to 35
	Soft Copper Liner	SCI	from 10 x 1.0 to 28 x 0.8
	Internal Liner	PP (PE-X / PB)	from 10 mm - PE-X / PB to 28 mm - PE-X / PB
0	Brass Washer	96	from 1/2" to 1"
0	Tap Sealing Washer	97	from 1/2" to 3/4"
	Gumowa podkładka zaślepiająca	98	from 15 to 42

Life cycle assessment (LCA) - general principles

Declared unit

The declared unit is the production of 1 kg of brass and bronze fittings - Conex Compression series.

Allocation

Semi-finished and finished products come to Sady from the factory in Poznań (Poland) and the factory in Yuhuan (China). Semi-finished products are assembled and packaged at Sady and shipped directly to customers or to storage facilities in Cordoba and Pensnett, from where they are distributed further to customers. Inputs were inventoried for each production (Poland, China) and storage facility (Poland, Spain, UK). The allocation of impacts is based on the weight of brass and bronze products, which is a percentage of total production and transport and represents: 0.036% at the Poznań site, 0.37% at the Sady site, 6.55% at the Pensnett site, 2.73% at the Cordoba site and 6.60% at the Yuhuan site. The allocation to a single, representative product was based on product weight. All raw material receipts are allocated in module A1. Production is based on brass and bronze ingots, and waste from production is sold as scrap to other operators where it will be recycled. Module A2 includes the transport of semi-finished products between the production sites: Yuhuan - Sady, and the production plant and storage facilities: Sady - Cordoba, Sady - Pensnett. Energy consumption, fuel consumption, water consumption and waste production were inventoried for the entire production process in module A3.

System boundaries

The life cycle analysis of the declared products includes the production stage (modules A1 - A3) and modules A4, C1-C4+D ("from cradle to gate with options") according to EN 15804 and ITB PCR A.

System limits

100% of input materials and 100% of electricity, natural gas, propane, diesel and water consumption were inventoried at the Poznan, Sady, Cordoba, Pensnett and Yuhuan plants. All relevant parameters from the collected production data are included in the assessment, i.e. all materials consumed for production, packaging materials and media used, waste produced and emissions generated.

Modules A1 and A2 Extraction and transport of raw materials

Raw materials and semi-finished products for production, such as brass, bronze ingots, phosphorus and zinc, are transported to the production facilities (Poland and China) from China and Europe. Module A1 shows the production impact of raw materials further used in the production of fittings. Raw material transport data is recorded by the plants. Means of transport include trucks, ships and trains. Global fuel averages were used for the calculation of module A2.

Module A3 Production

The production process is illustrated in the diagram on page 17. In Poznań, the production of brass and bronze fittings is carried out by casting in moulds, where the input material is bronze ingots. The next step is the machining of castings. At Yuhuan, once the raw material (brass) is supplied, machining (including blanking, forging) takes place. At both plants, the finished products undergo inspection, after which they are packaged. Electricity, gas, diesel fuel, water and propane are consumed in the process. Semi-finished products from Poznań and Yuhuan go to Sady, where the products are assembled and packaged, before being shipped to Pensnett and Cordoba or directly to customers. In Pensnett and Cordoba, the products are stored and sold to customers.

Module A4 Transport

Transport of products to the customer is carried out from three locations: Pensnett in the UK, Sady in Poland and Cordoba in Spain. Finished products are packed in bags and cartons. The company uses wheeled and sea transport, adapted to the size of the order. The largest order recipients are in Ireland, Denmark, Sweden, Poland, the Netherlands, Hong Kong and Spain. The fuel used is diesel. The average transport distance is 896 km for road transport and 1536 km for sea transport.

Module C1 Deconstruction and demolition

No information on the impact of deconstruction in the construction or any other sector is available for brass and bronze fittings. Therefore, no contribution to the impact categories of this module is reported and the module is equal to 0.

Module C2 Transport

It is assumed that the end-of-life product will be transported by truck to the nearest waste treatment facility (truck, diesel) within a 100 km distance.

Module C3 Waste treatment

It was assumed that 100% of the products would be recovered and recycled.

Module C4 Disposal

It was assumed that the products would not go to landfill at the end of their life, so the module is equal to 0.

Module D External impacts beyond system boundaries

To obtain the net result of recycled material from the product system, the contribution of the recycled material building up the product is subtracted from the material to be recycled at the end of life. Module D shows the burdens and benefits of recycling the remaining net recycled material. The benefits are assessed at the point of functional equivalence, i.e. where there is a substitution of virgin raw material. A 70% recycled brass content in the starting material is assumed.

Data collection period

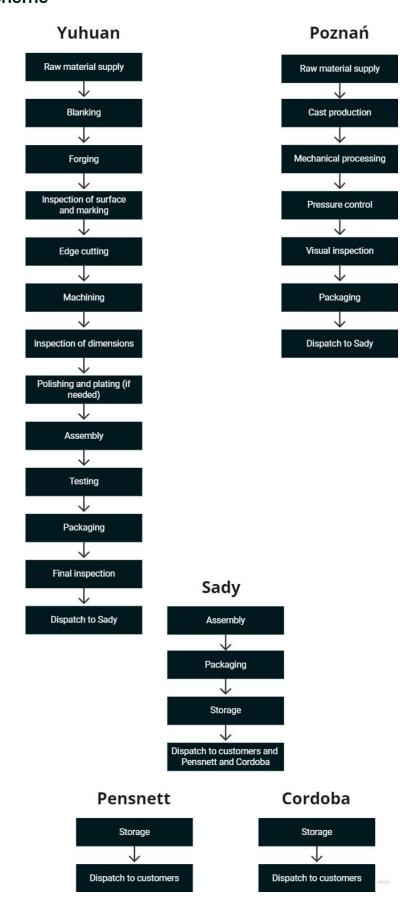
The input data of the declared products concern the period from January to December 2023. The life cycle assessment has been prepared for the whole world as a reference area.

Data quality

The data for the LCA calculation of modules A1-A4 came from verified LCI inventory data from the plant. In accordance with Annex E of EN 15804 + A2, a data quality assessment was carried out. For technical representativeness, processes with a quality level of 'very good' represent 99% of the values for the climate change indicators. For geographical and temporal representativeness, a process evaluation level of "very good" was obtained.

Assumptions and estimates

The impacts of the representative products were aggregated using a weighted average. The results obtained for the representative products can be applied proportionally to all types of brass fittings - series Conex Compression.


Calculation principles

LCA was made in accordance with PN-EN 15804+A2 standard and ITB PCR A (v1.6. 2023) document.

Databases

The data for the calculations came from Ecoinvent v. 3.8 and from databases available in Bionova OneClickLCA software. Emission factors for electricity in Poland have been supplemented with actual KOBIZE data. The characterisation factors are CML ver. 4.2 based on EN 15804+A2.

Production scheme

Life cycle assessment (LCA) - Results

The declared unit is 1 kg of brass and bronze fittings - Conex Compression series manufactured by IBP Instalfittings Sp. z o.o. The following indicates which LCA assessment modules were included in the assessment (MA - module assessed, MNA - module not assessed).

						Info	rmatio	n on s	ystem	bound	aries					
Pro	oduct sta	age		ruction age			L	lse stag	je				End	of life		Benefits and loads beyond the system boundaries
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction and installation process	Use	Maintenance	Repair	Replacement	Refurbishmentt	Operational energy use	Operational water use	Deconstruction / demolition	Transport	Waste processing	Disposal	Potential for reuse, recovery or recycling
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
MA	MA	MA	MA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MA	MA	MA	MA	MA

Environmental impacts

Indicator	Unit	Al	A2	A3	Al-A3	A4	Ö	C2	C3	C4	D
GLOBAL WARMING POTENTIAL – TOTAL	kg CO2 eq.	3.18E+00	5.33E-01	3.18E+00	6.89E+00	9.51E-02	0.00E+00	9.09E-03	1.06E-02	0.00E+00	-8.87E-01
GLOBAL WARMING POTENTIAL - FOSSIL	kg CO2 eq.	3.17E+00	5.33E-01	3.18E+00	6.89E+00	9.59E-02	0.00E+00	9.09E-03	1.61E-02	0.00E+00	-8.86E-01
GLOBAL WARMING POTENTIAL - BIOGENIC	kg CO2 eq.	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
GLOBAL WARMING POTENTIAL - LULUC	kg CO2 eq.	5.70E-03	2.57E-04	9.82E-04	6.94E-03	3.44E-05	0.00E+00	2.74E-06	1.82E-05	0.00E+00	-1.29E-03
DEPLETION POTENTIAL OF THE STRATOSPHERIC OZONE LAYER	kg CFC 11 eq.	1.99E-07	1.17E-07	2.65E-07	5.81E-07	2.20E-08	0.00E+00	2.14E-09	9.14E-10	0.00E+00	-4.77E-08
ACIDIFICATION POTENTIAL	mol H+ eq.	1.35E-01	9.41E-03	1.83E-02	1.63E-01	8.13E-04	0.00E+00	3.82E-05	9.62E-05	0.00E+00	-3.06E-02
EUTROPHICATION AQUATIC FRESHWATER	kg Pe	6.33E-04	0.00E+00	2.24E-05	6.56E-04	0.00E+00	0.00E+00	2.27E-07	7.77E-07	0.00E+00	-2.32E-03
EUTROPHICATION AQUATIC MARINE	kg N eq.	7.68E-03	2.38E-03	3.45E-03	1.35E-02	2.19E-04	0.00E+00	1.15E-05	2.77E-05	0.00E+00	-1.97E-03
EUTROPHICATION AQUATIC TERRESTRIAL	kg N eq.	1.04E-01	2.64E-02	3.61E-02	1.66E-01	2.42E-03	0.00E+00	1.27E-040	2.34E-04	0.00E+00	-2.51E-02
FORMULATION POTENTIAL OF TROPOSPHERIC OZONE	kg NMVOC eq.	2.91E-02	7.08E-03	9.24E-03	4.54E-02	6.99E-04	0.00E+00	4.08E-05	6.30E-05	0.00E+00	-7.06E-03
ABIOTIC DEPLETION POTENTIAL FOR NON-FOSSIL RESOURCES	kg Sb eq.	3.21E-03	6.65E-06	1.23E-05	3.23E-03	1.50E-06	0.00E+00	1.55E-07	6.93E-07	0.00E+00	2.08E-07
ABIOTIC DEPLETION POTENTIAL FOR FOSSIL RESOURCES	ΓW	3.94E+01	7.58E+00	5.73E+01	1.04E+02	1.45E+00	0.00E+00	1.41E-01	1.57E-01	0.00E+00	4.72E-02
WATER USE	m ₃	2.14E+00	2.30E-02	3.01E+00	5.18E+00	5.10E-03	0.00E+00	5.26E-04	4.65E-03	0.00E+00	-6.47E-01

9

Environmental Product Declaration Type III (EPD) ITB number 718/2024

Environmental aspects related to resource use

Indicator	Unit	Al	A2	A3	AI-A3	A4	ū	C2	ည	C4	D
RENEWABLE PRIMARY ENERGY AS AN ENERGY CARRIER	Σ	7.51E+00	7.65E-02	1.00E+01	1.76E+01	1.72E-02	0.00E+00	178E-03	2.67E-02	0.00E+00	-2.20E+00
RENEWABLE PRIMARY ENERGY FOR MATERIAL USE	ſΣ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00.E+00	0.00E+00	0.00E+00	0.00E+00
COMPLETELY RENEWABLE PRIMARY ENERGY	Σ	7.51E+00	7.65E-02	1.00E+01	1.76E+01	1.72E-02	0.00E+00	1.78E-03	2.67E-02	0.00E+00	-2.20E+00
NON-RENEWABLE PRIMARY ENERGY AS AN ENERGY SOURCE	Š	3.94E+01	7.58E+00	5.35E+01	1.00E+02	1.45E+00	0.00E+00	1.41E-01	1.57E-01	0.00E+00	-1.13E+01
NON-RENEWABLE PRIMARY ENERGY AS MATERIA USE	Σ	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COMPLETELY NON-RENEWABLE PRIMARY ENERGY	Σ	3.94E+01	7.58E+00	5.35E+01	1.00E+02	1.45E+00	0.00E+00	1.41E-01	1.57E-01	0.00E+00	-1.13E+01
USE OF SECONDARY RAW MATERIALS	Š	1.37E-01	0.00E+00	1.34E-03	1.38E-01	0.00E+00	0.00E+00	0.00E+00	2.93E-04	0.00E+00	-1.74E-01
RENEWABLE SECONDARY FUELS	ſΨ	1.17E-03	0.00E+00	2.32E-04	1.40E-03	0.00E+00	0.00E+00	0.00E+00	2.42E-05	0.00E+00	7.25E-06
NON-RENEWABLE SECONDARY FUELS	ſΨ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
USE OF FRESH WATER RESOURCES	Σ	6.43E-02	1.21E-03	2.95E-02	9.49E-02	2.81E-04	0.00E+00	2.94E-05	1.26E-04	0.00E+00	-1.92E-02

Environmental Product Declaration Type III (EPD) ITB number 718/2024

Other environmental information describing the waste categories

Indicator	Unit	A1	A2	A3	Al-A3	A4	C	C2	C3	C4	О
HAZARDOUS WASTE DESTINED FOR LANDFILL	kg	7.57E-01	8.00E-03	8.99E-02	8.54E-01	1.45E-03	0.00E+00	1.37E-04	0.00E+00	0.00E+00 1.37E-04 0.00E+00 0.00E+00	5.03E-04
NON-HAZARDOUS WASTE DESTINED FOR DISPOSAL	, Y	3.92E+01	5.15E-01	3.92E+00 4.36E+01	4.36E+01	1.39E-01	1.39E-01 0.00E+00	1.52E-02	1.52E-02 0.00E+00 0.00E+00		1.52E-02
RADIOACTIVE WASTE FOR DISPOSAL	ķ	1.42E-04	5.25E-05	4.04E-04	5.99E-04	9.99E-06	0.00E+00	9.70E-07	0.00E+00	5.25E-05 4.04E-04 5.99E-04 9.99E-06 0.00E+00 9.70E-07 0.00E+00 0.00E+00 2.78E-07	2.78E-07
COMPONENTS TO BE REUSED	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MATERIALS TO BE RECYCLED	Ŋ D	0.00E+00	0.00E+00 0.00E+00	1.11E-01	1.11E-01	0.00E+00	0.00E+00	0.00E+00	1.00E+00	0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00	0.00E+00
MATERIALS DESTINED FOR ENERGY RECOVERY	Ŋ D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ELECTRICITY EXPORTED	M	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Interpretation of the results of the LCA analysis of brass fittings Conex Compression

The following life cycle phases are responsible for the largest CO2 emissions:

- A3 Production 45.5%
- Al Raw material supply 45.3%
- A2 Transport of raw materials to the production site 7.6%

The end-of-life scenario assuming complete recycling of brass and bronze products results in a reduced carbon footprint for the products covered by this declaration, thereby minimising the environmental impact.

Verification

The verification process for this EPD is in accordance with ISO 14025 and ISO 21930. Once verified, this EPD is valid for a period of 5 years. There is no need to recalculate after 5 years if the inputs have not changed significantly.

EN 15804 standard serves as the basis for ITB PCR-A independent verification according to ISO 14025 (subsection 8.1.3.)

[] internal [x] external

External verification of EPD: Michał Piasecki, Professor ITB, m.piasecki@itb.pl
Input data verification, LCI audyt, LCA: Zuzanna Gondek, JWA, z.gondek@jw-a.pl
LCA verification: Michał Piasecki, Professor ITB, m.piasecki@itb.pl

Note 1: The declaration owner has the sole ownership. liability. and responsibility for the information provided and contained in EPD. Declarations of construction products may not be comparable if they do not comply with EN 15804+A2. For further information about comparability. see EN 15804+A2 and ISO 14025.

Note 2: ITB is a public Research Organization and Notified Body (EC Reg. no 1488) to the European Commission and to other Member States of the European Union designated for the tasks concerning the assessment of building products' performance. ITB acts as the independent. third-party verification organization (ISO 17025/17065/17029). ITB-EPD program is recognized and registered member of The European Platform - Association of EPD program operators and ITB-EPD declarations are registered and stored in the international ECO-PORTAL.

Normative references

ITB PCR A General Product Category Rules for Construction Products

ISO 14025:2006 Environmental labels and declarations – Type III environmental declarations – Principles and procedures

ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services

ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines

EN 15804 +A2 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

EN 12164 Copper and copper alloys - Rod for free machining purposes

EN 12165 Copper and copper alloys - Wrought and unwrought forging stock

EN 12168 Copper and copper alloys - Hollow rod for free machining purposes

EN 1982 Copper and copper alloys - Ingots and castings

EN 1254-2 Copper and copper alloys - Plumbing fittings - Part 2: Compression fittings for use with copper tubes

EN 1254-4 Copper and copper alloys - Plumbing fittings - Part 4: Threaded fittings

EN 10226-1 Pipe threads where pressure tight joints are made on the threads - Taper external threads and parallel internal threads. Dimensions, tolerances and designation

EN 228-1 Pipe threads where pressure-tight joints are not made on the threads - Part 1: Dimensions, tolerances and designation

EN 1057 Copper and copper alloys - Seamless, round copper tubes for water and gas in sanitary and heating applications

EN 10312 Welded stainless steel tubes for the conveyance of aqueous liquids including water for human consumption - Technical delivery conditions

EN 10312-3 Precision steel tubes - Technical delivery conditions - Part 3: Welded cold calibrated tubes

Thermal Physics, Acoustics and Environment Department 02-656 Warsaw, Ksawerów 21

CERTIFICATE № 718/2024 of TYPE III ENVIRONMENTAL DECLARATION

Products:

Brass and bronze fittings - Conex Compression series

Manufacturer:

IBP Instalfittings Sp. z o.o.

ul. Stanisława Zwierzchowskiego 29, 61-249 Poznań, Poland

confirms the correctness of the data included in the development of Type III Environmental Declaration and accordance with the requirements of the standard

EN 15804+A2

Sustainability of construction works.

Environmental product declarations.

Core rules for the product category of construction products.

This certificate, issued on 28th November 2024 is valid for 5 years or until amendment of mentioned Environmental Declaration

Head of the Thermal Physic, Acoustics and Environment Department

Windler- Halme

Agnieszka Winkler-Skalna, PhD

THECHNIK! BUDOWLAND

Deputy Director for Research and Innovation

Krzysztof Kuczyński, PhD

Warsaw, November 2024