

Issuance date: 18.12.2025

Validation: 14.01.2026

Validity date: 8.12.2030

Stravifloor Deck

Owner of the EPD:

CDM Stravitec
Address: Reutenebeek 9-11,
3090 Overijse Belgium
Tel.: +32 2687 79 07
Website: <https://cdm-stravitec.com/en-us>
Contact: info@cmd-stravitec.com

EPD Program Operator:

Instytut Techniki Budowlanej (ITB)
Address: Filtrowa 1,
00-611 Warsaw, Poland
Website: www.itb.pl
Contact: Michał Piasecki
m.piasecki@itb.pl
energia@itb.pl

ITB is the verified member of The European Platform for EPD program operators and LCA practitioner www.eco-platform.org

Basic information

This declaration is the Type III Environmental Product Declaration (EPD) based on EN 15804+A2 and verified according to ISO 14025 by an external auditor. It contains the information on the impacts of the declared construction materials on the environment and their aspects verified by the independent body according to ISO 14025. Basically, comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804+A2.

Life cycle analysis (LCA): A1-A5, C1-C4 and D modules in accordance with EN 15804

(Cradle-to-Gate with options)

Product standards: EN ISO 10846, EN ISO 10140, EN ISO 717-2, EN ISO 717-1

The year of preparing the EPD: 2025

Service Life: 50 years for standard product

PCR: ITB-PCR A

Declared unit: 1 m²

Reasons for performing LCA: B2B

Representativeness: Belgium, European, 2025

MANUFACTURER

CDM Stravitec is an international engineering and manufacturing company headquartered in Overijse (Belgium), specializing in the design, production, and supply of vibration and noise isolation systems for the building and construction sector. For more than seven decades, the company has been developing solutions that improve acoustic comfort and vibration control in a wide range of applications, including recording studios, concert halls, residential and office buildings, sports facilities, and transport infrastructure. CDM Stravitec

Figure 1. A View of CDM Stravitec headquarter located in Overijse (Belgium)

offers a comprehensive portfolio of systems such as Stravifloor, Stravilink, Stravimech, and Stravibase, which include floating floors, resilient connections, and vibration isolation supports for building structures. The company operates globally through a network of engineering offices and production facilities, providing project consultancy, technical support, and product delivery to international markets.

In its operations, CDM Stravitec places strong emphasis on quality, innovation, and environmental responsibility. The company maintains certified management systems in accordance with ISO 9001 and ISO 14001, and its production processes are conducted with a focus on efficient resource use, waste reduction, and minimizing environmental impact.

PRODUCTS DESCRIPTION AND APPLICATION

Stravifloor Deck is a low-profile floating floor solution using a proprietary dovetailed metal deck for thin concrete pours. The solution high bending stiffness allows for concrete toppings as thin as 50 mm (2 inches), making this solution a great solution for projects that require a low-profile or lightweight concrete floating floor. It is also suitable for areas with high live loads.

This solution provides a high-performance floating floor solution for excellent structure-borne and airborne noise isolation, while minimizing any impact on the available floor-ceiling height. The subject of the EPD declaration are the 2 variants of the manufactured solution described in Table 1.

Table 1. Manufactured variants of the Stravifloor Deck solution

Solution variants	Minimum height of solution (minimum concrete thickness included)	Functional unit	Variant reference
Stravifloor Deck on springs	130 mm	1 m ²	Variant 1
Stravifloor Deck on elastomeric pads	87 mm	1 m ²	Variant 2

All additional technical information about the product is available on [the manufacturer's website and catalogues](#).

LIFE CYCLE ASSESSMENT (LCA) – general rules applied

Unit

The declared unit is 1 m² of reference product. LCA results are provided for each reference product separately.

System boundary

The life cycle analysis (LCA) of the declared products covers: product stage – modules A1-A5, end of life – modules C1-C4 and benefits and loads beyond the system boundary – module D (cradle-to-gate with options) in accordance with EN 15804+A2 and ITB PCR A. Energy and water consumption, emissions as well as information on generated wastes were inventoried and were included in the calculations. It can be assumed that the total sum of omitted processes does not exceed 5% of all impact categories. In accordance with EN 15804+A2, machines and facilities (capital goods) required for the production as well as transportation of employees were not included in LCA.

Allocation

The allocation rules applied for this EPD follow the general ITB's PCR A document. The production process of Stravifloor Deck, presented in Figure 2, is carried out in manufacturing plants located in Wavre, Belgium. The system boundaries include the purchase and delivery of input materials (including galvanized steel for channels, materials for elastomeric pads and springs, mineral wool, dovetailed deck sheets, and packaging components), their transport to the production plant, processing and assembly of the solution components (Corrugated deck sheets, bearings, insulation layers, and ancillary elements), quality control, packaging, and transport of the finished products to the customer. Input and output data from the production are inventoried and allocated to the products on a mass basis. The declaration covers all the Stravifloor Deck solutions manufactured in the CDM Stravitec Warehouse plant. Since the production resources and processing stages are essentially similar across product variants, it is possible to average the production data based on product mass.

System limits

Minimum 99.0% input materials and 100% energy consumption (electricity, natural gas) were inventoried in a processing plant and were included in the calculation. In the assessment, all available data from production have been considered, i.e. all raw materials/elements used as per formulation process, utilized thermal energy for heating, and electric power consumption. Thus, material and energy flows contributing less than 1 % of mass or energy have not been considered. It can be assumed that the total sum of neglected processes does not exceed 1 % of energy usage and mass per modules A or D. Machines and facilities required during production are neglected. The packaging products are included.

Modules A1 and A2: Raw materials supply and transport

Modules A1 and A2 represent the extraction and processing of raw materials (mainly galvanized steel, engineered elastomeric sheets, and auxiliary materials such as mineral wool, perimeter strips, and dovetailed deck sheets), as well as their transport to the assembly site of CDM Stravitec in Wavre, Belgium. The main semi-finished materials used in the assembly of Stravifloor Deck solutions include galvanized steel Decks, springs with caps, and elastomeric pads cut from 30 or 50 mm thick elastomeric sheets, together forming the vibration-isolated bearing assemblies. Additional components such as mineral wool, dovetailed deck sheets, perimeter strips, and packaging materials (foil, tape, and pallets) are used to complete the solution packaging and logistics. Raw materials and auxiliary components are sourced from both European and international suppliers to ensure consistent product quality and performance. Module A2 (transport) includes road transport by truck, based on European average fuel consumption data and typical distances between suppliers and the Wavre production facility.

Module A3: Production

The assembly process takes place at the CDM Stravitec Warehouse facility in Wavre, Belgium, where Stravifloor Deck solutions are assembled. A schematic of the process is presented in Figure 2. The process begins with the receipt of pre-fabricated components, including galvanized steel channels, springs with caps, elastomeric sheets, mineral wool, dovetailed deck sheets, and perimeter strips. The only transformation step is the cutting of elastomeric sheets into individual pads. These pads or spring with caps, together with channels, are used in the assembly of channels with bearings. The assembled channels are then packaged using packaging tape. All components — including the assembled channels, mineral wool, dovetailed deck sheets, and perimeter strips — are brought together during the final pallet packaging stage, which also involves the use of packaging foil. The Stravifloor Deck solution is thus prepared for dispatch. This cradle-to-gate assessment includes the upstream manufacture of all supplied components, their transport to the assembly site, and the assembly and packaging operations carried out at the Wavre facility.

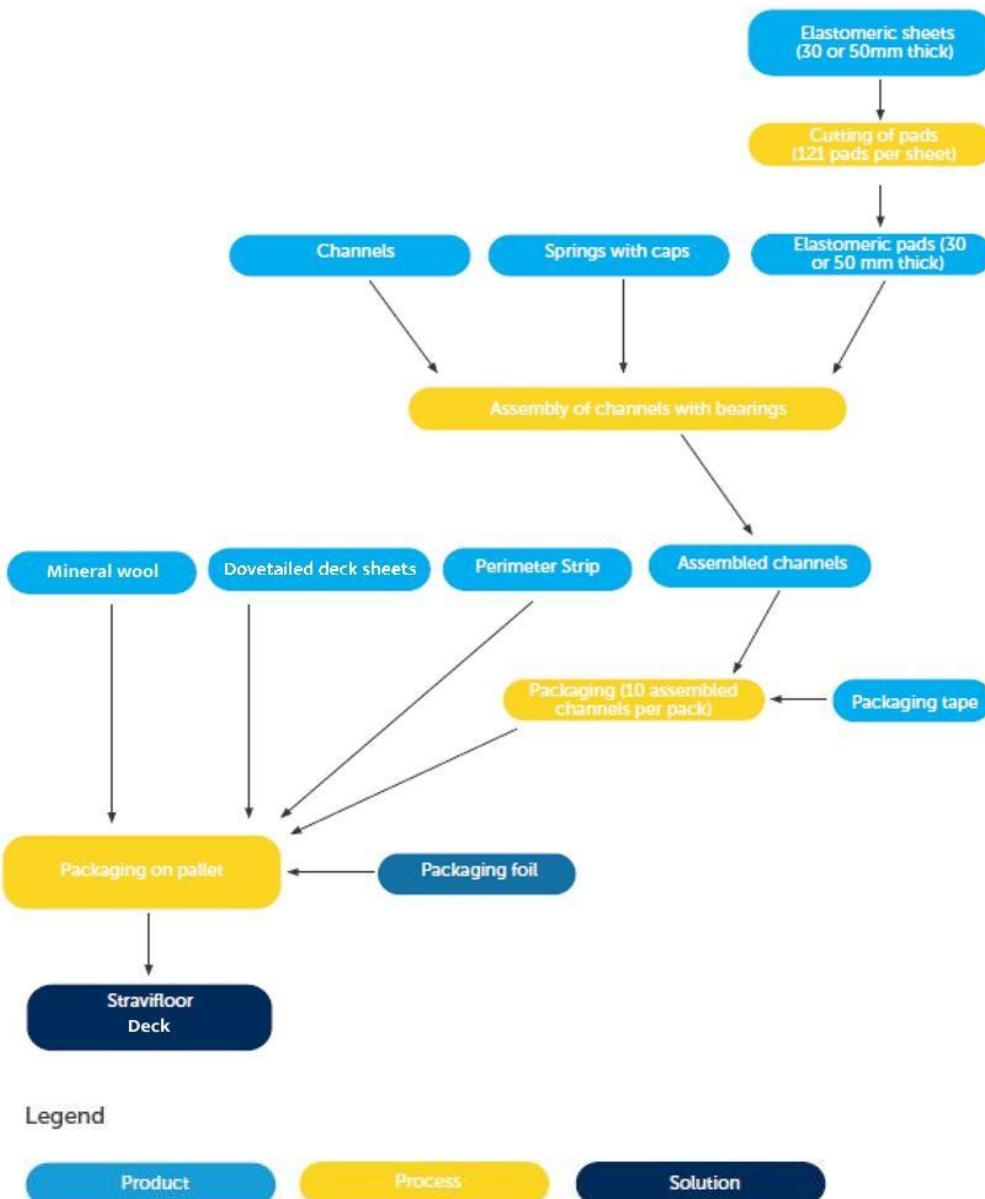


Figure 2. Diagram of the manufacturing process of the Stravifloor Deck solution in CDM Stravitec Warehouse in Wavre, Belgium

Module A4 and A5: Transport to consumer and installation

Transport of Stravifloor Deck from the manufacturing plant to the construction site is carried out using specialized trucks. A transport distance of 100 km is considered (emission standard: Euro 5) with 100% load capacity, 4,5 MJ of primary energy is used for installation of 1 m².

Modules C and D: End-of-life (EOL)

Due to the fact that the declaration covers a wide range of Stravifloor Deck configurations for various applications and installation conditions, it is not possible to directly specify the deconstruction technology and the amount of energy required for disassembly in Module C1. Therefore, this module is represented in a generic way, based on literature data.

In the adapted end-of-life scenario, the deconstructed solution components are sorted. The steel Decks and springs represent the main metallic fraction and are assumed to be sent for recycling.

Transport to recycling facilities (e.g., steel recycling plants) is assumed to occur over an average distance of 100 km by a >16 t EURO 5 lorry.

In Module C3 (Waste Processing for Recycling), the steel components are processed as scrap. The recycling potential for steel is high due to its well-established recovery systems and high recyclability. It is assumed that 95% of the total steel mass from the product is recovered and enters the recycling stream. Other components, such as mineral wool and rubber may be recycled where appropriate facilities exist, but due to limited data and variable local conditions, a conservative approach has been adopted for these materials.

Consequently, in Module C4 (Disposal), it is assumed that the remaining 5% of the steel, together with non-recyclable components (e.g., elastomeric residues, mineral wool with contamination, polymer foils, and composite waste), are sent to landfill.

Module D accounts for the net benefits and loads beyond the system boundary, including credits associated with the recycling of steel scrap. These credits, representing the avoided environmental burden of primary steel production, are calculated using conservative and recognized datasets for secondary (recycled) steel. This module therefore reflects the potential resource recovery associated with the end-of-life stage of the Stravifloor Deck solution.

Table 1. End-of-life scenario for the Stravifloor Deck solution

Material	Material recovery	Recycling	Landfilling
Steel	100%	95%	5%
Mineral Wool	100%	30%	70%
EPDM / Rubber	100%	80%	20%

Data collection period

The data for manufacture of the declared products refer to period between 01.01.2024 – 31.12.2024 (1 year). The life cycle assessments were prepared for Belgium and Europe as reference area.

Data quality

The data selected for LCA originate from ITB-LCI questionnaires completed by CDM Stravitec. and verified during data audit. No data collected is older than five years and no generic datasets used are older than ten years. The representativeness, completeness, reliability, and consistency is judged as good. The background data for the processes come from the following resources database Ecoinvent v.3.11 and specific suppliers (EPDs). Specific (LCI) data quality analysis was a part of the input data verification.

Assumptions and estimates

The impacts of the representative products were aggregated using weighted average.

Calculation rules

LCA was performed using ITB-LCA tool developed in accordance with EN15804+A2. Emission of greenhouse gases was calculated using the IPCC GWP method with a 100-year horizon. Emission of acidifying substances, emission of substances to water contributing to oxygen depletion, emission of gases that contribute to the creation of ground-level ozone, abiotic depletion, and ozone depletion emissions were all calculated with the EF 3.1. method. No mass balance approach was used. Biogenic carbon in product is 0.49 kg C/m². The electricity production country mix used for calculation is 0.146 kg CO₂/kWh.

LIFE CYCLE ASSESSMENT (LCA) – Results

Declared unit

The following life cycle modules (Table 3) were included in the analysis.

The declaration refers to declared unit (DU) of 1 m² for:

- Stravifloor Deck on springs (minimum height of 130 mm), the life cycle environmental impact of selected modules (A1-A5+C1-C4+D) is presented in Tables 4-7;
- Stravifloor Deck on elastomeric pads (minimum height of 87 mm), the life cycle environmental impact of selected modules (A1-A5+C1-C4+D) is presented in Tables 8-11;

Table 3 System boundaries for the environmental characteristic of the product.

Environmental assessment information (MD – Module Declared, MND – Module Not Declared, INA – Indicator Not Assessed)																
Product stage			Construction process		Use stage							End of life				Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction-installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MD	MD	MND	MND	MND	MND	MND	NMD	MND	MD	MD	MD	MD	MD

Type III Environmental Product Declaration No. 866/2025

Table 4 Life cycle assessment (LCA) results of Stravifloor Deck on springs (130 mm) – environmental impacts (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Global Warming Potential	eq. kg CO ₂	2.99E+01	2.49E-01	1.99E-01	3.03E+01	1.48E-01	6.87E-03	3.92E-02	2.44E-02	9.05E-01	1.83E+00	-5.22E+00
Greenhouse potential - fossil	eq. kg CO ₂	2.99E+01	2.49E-01	1.99E-01	3.04E+01	1.48E-01	6.85E-03	3.90E-02	2.44E-02	8.45E-01	4.45E-02	-5.20E+00
Greenhouse potential - biogenic	eq. kg CO ₂	-1.79E+00	1.59E-04	4.51E-04	-1.79E+00	5.05E-04	1.85E-05	1.05E-04	6.57E-05	5.96E-02	1.79E+00	-1.05E-02
Global warming potential - land use and land use change	eq. kg CO ₂	1.73E+00	8.25E-05	8.10E-05	1.73E+00	5.80E-05	1.07E-06	6.10E-06	3.81E-06	6.32E-04	4.20E-05	-5.76E-04
Stratospheric ozone depletion potential	eq. kg CFC 11	6.64E-02	5.42E-09	1.07E-08	6.64E-02	3.42E-08	3.77E-11	2.15E-10	1.34E-10	6.72E+00	1.80E-08	-1.81E-07
Soil and water acidification potential	eq. mol H+	5.47E-01	7.98E-04	1.34E-04	5.48E-01	6.00E-04	7.25E-05	4.13E-04	2.58E-04	6.09E-03	4.18E-04	-2.08E-02
Eutrophication potential - freshwater	eq. kg P	1.69E-01	1.70E-05	5.16E-06	1.69E-01	9.93E-06	1.18E-05	6.73E-05	4.20E-05	1.73E-04	4.14E-06	-2.24E-03
Eutrophication potential - seawater	eq. kg N	1.05E-01	2.69E-04	3.77E-05	1.06E-01	1.81E-04	1.03E-05	5.85E-05	3.65E-05	1.60E-02	1.46E-04	-4.59E-03
Eutrophication potential - terrestrial	eq. mol N	1.82E+00	2.92E-03	3.80E-04	1.83E+00	1.97E-03	8.95E-05	5.10E-04	3.18E-04	3.29E-02	1.59E-03	-4.97E-02
Potential for photochemical ozone synthesis	eq. kg NMVOC	1.95E-01	1.21E-03	1.57E-04	1.96E-01	6.05E-04	2.57E-05	1.47E-04	9.16E-05	6.43E-03	4.63E-04	-2.54E-02
Potential for depletion of abiotic resources - non-fossil resources	eq. kg Sb	1.19E-01	8.57E-07	3.43E-07	1.19E-01	5.24E-07	2.58E-09	1.47E-08	9.18E-09	3.09E-06	1.02E-07	-9.84E-05
Abiotic depletion potential - fossil fuels	MJ	3.00E+02	3.53E+00	2.68E+00	3.06E+02	2.19E+00	1.08E-01	6.17E-01	3.85E-01	5.88E+00	1.22E+00	-4.41E+01
Water deprivation potential	eq. m ³	4.49E+01	1.85E-02	2.12E-02	4.49E+01	1.01E-02	2.07E-03	1.18E-02	7.35E-03	1.32E-01	3.87E-03	-7.30E-01

Table 5 Life cycle assessment (LCA) results of Stravifloor Deck on springs (130 mm) – additional impacts indicators (DU: 1 m²)

Indicator	Unit	A1-A5	C1-C4	D
Particulate matter	disease incidence	INA	INA	INA
Potential human exposure efficiency relative to U235	eg. kBq U235	INA	INA	INA
Potential comparative toxic unit for ecosystems	CTUe	INA	INA	INA
Potential comparative toxic unit for humans (cancer effects)	CTUh	INA	INA	INA
Potential comparative toxic unit for humans (non-cancer effects)	CTUh	INA	INA	INA
Potential soil quality index	dimensionless	INA	INA	INA

Type III Environmental Product Declaration No. 866/2025

Table 6 Life cycle assessment (LCA) results of Stravifloor Deck on springs (130 mm) - the resource use (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Consumption of renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	4.71E+01	5.74E-02	4.04E-01	4.76E+01	3.15E-02	8.90E-03	5.07E-02	3.16E-02	1.09E+00	0.00E+00	-4.03E+00
Consumption of renewable primary energy resources used as raw materials	MJ	6.79E+00	0.00E+00	0.00E+00	6.79E+00	0.00E+00						
Total consumption of renewable primary energy resources	MJ	5.39E+01	5.74E-02	4.04E-01	5.43E+01	3.15E-02	8.90E-03	5.07E-02	3.16E-02	1.09E+00	1.06E-02	-4.03E+00
Consumption of non-renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	3.82E+02	3.53E+00	2.83E+00	3.88E+02	2.19E+00	1.08E-01	6.17E-01	3.85E-01	6.79E+01	0.00E+00	-6.10E+01
Consumption of non-renewable primary energy resources used as raw materials	MJ	9.83E+00	0.00E+00	0.00E+00	9.83E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.30E+01	0.00E+00	-1.86E+01
Total consumption of non-renewable primary energy resources	MJ	3.92E+02	3.53E+00	2.83E+00	3.98E+02	2.19E+00	1.08E-01	6.17E-01	3.85E-01	5.88E+00	1.22E+00	-4.24E+01
Consumption of secondary materials	kg	6.62E-01	1.57E-03	2.92E-04	6.64E-01	7.35E-04	9.40E-06	5.36E-05	3.34E-05	1.06E+00	2.56E-04	-7.42E+00
Consumption of renew. secondary fuels	MJ	3.04E-01	2.07E-05	4.56E-06	3.04E-01	8.10E-06	4.75E-08	2.71E-07	1.69E-07	3.20E-06	6.69E-06	-8.97E-04
Consumption of non-renewable secondary fuels	MJ	6.64E-02	0.00E+00	0.00E+00	6.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.67E-05	0.00E+00	-1.83E-05
Net consumption of freshwater	m ³	4.10E-01	4.26E-04	5.18E-04	4.11E-01	2.76E-04	3.11E-04	1.77E-03	1.10E-03	4.05E-03	1.33E-03	-3.82E-02

Table 7 Life cycle assessment (LCA) results of Stravifloor Deck on springs (130 mm) – waste categories (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Hazardous waste	kg	3.24E+00	5.05E-03	1.32E-03	3.25E+00	2.46E-03	8.38E-04	4.78E-03	2.98E-03	1.58E-02	1.30E-03	-8.42E-03
Non-hazardous waste	kg	2.76E+01	1.08E-01	2.47E-02	2.77E+01	4.37E-02	5.65E-02	3.22E-01	2.01E-01	1.44E+00	1.83E-02	1.14E-01
Radioactive waste	kg	6.71E-02	1.04E-06	1.41E-05	6.71E-02	1.64E-07	1.62E-08	9.25E-08	5.77E-08	2.41E-05	8.10E-06	7.68E-05
Components for re-use	kg	6.64E-02	0.00E+00	0.00E+00	6.64E-02	0.00E+00						
Materials for recycling	kg	1.21E-01	4.22E-05	2.81E-04	1.21E-01	6.79E-06	7.26E-07	4.14E-06	2.58E-06	8.40E-04	2.44E-06	-4.18E-04
Materials for energy recovery	kg	6.64E-02	2.24E-07	2.83E-08	6.64E-02	5.49E-08	1.17E-09	6.65E-09	4.15E-09	2.18E-07	2.89E-08	-8.72E-08
Exported Energy	MJ	2.03E-01	1.54E-03	7.60E-04	2.05E-01	0.00E+00	3.46E-04	1.97E-03	1.23E-03	5.49E-01	0.00E+00	-8.48E-03

Type III Environmental Product Declaration No. 866/2025

Table 8 Life cycle assessment (LCA) results of Stravifloor Deck on elastomeric pads (87 mm) – environmental impacts (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Global Warming Potential	eq. kg CO ₂	2.68E+01	2.35E-01	1.88E-01	2.72E+01	1.40E-01	6.87E-03	3.92E-02	2.31E-02	8.56E-01	1.86E+00	-5.18E+00
Greenhouse potential - fossil	eq. kg CO ₂	2.69E+01	2.35E-01	1.88E-01	2.73E+01	1.40E-01	6.85E-03	3.90E-02	2.30E-02	7.99E-01	4.21E-02	-5.17E+00
Greenhouse potential - biogenic	eq. kg CO ₂	-1.82E+00	1.50E-04	4.27E-04	-1.82E+00	4.78E-04	1.85E-05	1.05E-04	6.21E-05	5.64E-02	1.82E+00	-4.60E-03
Global warming potential - land use and land use change	eq. kg CO ₂	1.73E+00	7.80E-05	7.66E-05	1.73E+00	5.49E-05	1.07E-06	6.10E-06	3.60E-06	5.98E-04	3.97E-05	-5.21E-04
Stratospheric ozone depletion potential	eq. kg CFC 11	6.64E-02	5.12E-09	1.01E-08	6.64E-02	3.23E-08	3.77E-11	2.15E-10	1.27E-10	6.36E+00	1.70E-08	-1.80E-07
Soil and water acidification potential	eq. mol H ⁺	5.30E-01	7.55E-04	1.27E-04	5.31E-01	5.67E-04	7.25E-05	4.13E-04	2.44E-04	5.77E-03	3.96E-04	-2.07E-02
Eutrophication potential - freshwater	eq. kg P	1.66E-01	1.61E-05	4.88E-06	1.66E-01	9.40E-06	1.18E-05	6.73E-05	3.97E-05	1.64E-04	3.92E-06	-2.22E-03
Eutrophication potential - seawater	eq. kg N	1.02E-01	2.54E-04	3.56E-05	1.02E-01	1.71E-04	1.03E-05	5.85E-05	3.45E-05	1.51E-02	1.38E-04	-4.55E-03
Eutrophication potential - terrestrial	eq. mol N	1.82E+00	2.76E-03	3.59E-04	1.83E+00	1.87E-03	8.95E-05	5.10E-04	3.01E-04	3.12E-02	1.51E-03	-4.93E-02
Potential for photochemical ozone synthesis	eq. kg NMVOC	2.60E-01	1.14E-03	1.48E-04	2.62E-01	5.72E-04	2.57E-05	1.47E-04	8.66E-05	6.08E-03	4.38E-04	-2.54E-02
Potential for depletion of abiotic resources - non-fossil resources	eq. kg Sb	1.19E-01	8.10E-07	3.25E-07	1.19E-01	4.96E-07	2.58E-09	1.47E-08	8.68E-09	2.92E-06	9.65E-08	-9.81E-05
Abiotic depletion potential - fossil fuels	MJ	2.99E+02	3.34E+00	2.54E+00	3.04E+02	2.07E+00	1.08E-01	6.17E-01	3.64E-01	5.56E+00	1.15E+00	-4.36E+01
Water deprivation potential	eq. m ³	1.15E+01	1.75E-02	2.01E-02	1.16E+01	9.59E-03	2.07E-03	1.18E-02	6.96E-03	1.24E-01	3.66E-03	-7.18E-01

Table 9 Life cycle assessment (LCA) results of Stravifloor Deck on elastomeric pads (87 mm) – additional impacts indicators (DU: 1 m²)

Indicator	Unit	A1-A5	C1-C4	D
Particulate matter	disease incidence	INA	INA	INA
Potential human exposure efficiency relative to U235	eg. kBq U235	INA	INA	INA
Potential comparative toxic unit for ecosystems	CTUe	INA	INA	INA
Potential comparative toxic unit for humans (cancer effects)	CTUh	INA	INA	INA
Potential comparative toxic unit for humans (non-cancer effects)	CTUh	INA	INA	INA
Potential soil quality index	dimensionless	INA	INA	INA

Type III Environmental Product Declaration No. 866/2025

Table 10 Life cycle assessment (LCA) results of Stravifloor Deck on elastomeric pads (87 mm) - the resource use (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Consumption of renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	2.85E+01	5.43E-02	3.82E-01	2.90E+01	2.98E-02	8.90E-03	5.07E-02	2.99E-02	1.03E+00	0.00E+00	-3.92E+00
Consumption of renewable primary energy resources used as raw materials	MJ	1.54E+01	0.00E+00	0.00E+00	1.54E+01	0.00E+00						
Total consumption of renewable primary energy resources	MJ	4.41E+01	5.43E-02	3.82E-01	4.45E+01	2.98E-02	8.90E-03	5.07E-02	2.99E-02	1.03E+00	1.00E-02	-3.92E+00
Consumption of non-renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	3.56E+02	3.34E+00	2.68E+00	3.62E+02	2.07E+00	1.08E-01	6.17E-01	3.64E-01	6.42E+01	0.00E+00	-5.67E+01
Consumption of non-renewable primary energy resources used as raw materials	MJ	2.96E+00	0.00E+00	0.00E+00	2.96E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.96E+01	0.00E+00	-1.48E+01
Total consumption of non-renewable primary energy resources	MJ	3.59E+02	3.34E+00	2.68E+00	3.65E+02	2.07E+00	1.08E-01	6.17E-01	3.64E-01	5.57E+00	1.15E+00	-4.19E+01
Consumption of secondary materials	kg	3.29E-01	1.49E-03	2.76E-04	3.31E-01	6.96E-04	9.40E-06	5.36E-05	3.16E-05	1.00E+00	2.42E-04	-7.31E+00
Consumption of renew. secondary fuels	MJ	3.00E-01	1.96E-05	4.32E-06	3.00E-01	7.67E-06	4.75E-08	2.71E-07	1.60E-07	3.03E-06	6.33E-06	-8.97E-04
Consumption of non-renewable secondary fuels	MJ	6.64E-02	0.00E+00	0.00E+00	6.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.47E-05	0.00E+00	-1.47E-05
Net consumption of freshwater	m ³	3.71E-01	4.03E-04	4.90E-04	3.71E-01	2.61E-04	3.11E-04	1.77E-03	1.04E-03	3.83E-03	1.26E-03	-3.78E-02

Table 11 Life cycle assessment (LCA) results of Stravifloor Deck on elastomeric pads (87 mm) – waste categories (DU: 1 m²)

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	C1	C2	C3	C4	D
Hazardous waste	kg	2.78E-01	4.78E-03	1.25E-03	2.84E-01	2.33E-03	8.38E-04	4.78E-03	2.82E-03	1.50E-02	1.23E-03	-6.84E-03
Non-hazardous waste	kg	1.02E+01	1.02E-01	2.33E-02	1.03E+01	4.13E-02	5.65E-02	3.22E-01	1.90E-01	1.36E+00	1.73E-02	-2.49E-01
Radioactive waste	kg	6.70E-02	9.81E-07	1.34E-05	6.71E-02	1.55E-07	1.62E-08	9.25E-08	5.46E-08	2.28E-05	7.66E-06	-7.89E-05
Components for re-use	kg	6.64E-02	0.00E+00	0.00E+00	6.64E-02	0.00E+00						
Materials for recycling	kg	1.18E-01	3.99E-05	2.66E-04	1.18E-01	6.42E-06	7.26E-07	4.14E-06	2.44E-06	7.94E-04	2.31E-06	-3.35E-04
Materials for energy recovery	kg	6.64E-02	2.12E-07	2.67E-08	6.64E-02	5.20E-08	1.17E-09	6.65E-09	3.92E-09	2.06E-07	2.73E-08	-6.98E-08
Exported Energy	MJ	9.22E-02	1.46E-03	7.19E-04	9.44E-02	0.00E+00	3.46E-04	1.97E-03	1.16E-03	5.19E-01	0.00E+00	-6.78E-03

Type III Environmental Product Declaration No. 866/2025

Verification

The process of verification of this EPD is in accordance with ISO 14025 and ISO 21930. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804+A2 and ITB PCR A

Independent verification corresponding to ISO 14025 (subclause 8.1.3.)

external

internal

External verification of EPD: Halina Prejzner, PhD. Eng.

LCI audit and verification: Filip Poznański, M.Sc. Eng.

LCA, LCI audit and input data verification: Michał Piasecki, PhD., D.Sc., Eng.

Note 1: The declaration owner has the sole ownership, liability, and responsibility for the information provided and contained in EPD. Declarations of construction products may not be comparable if they do not comply with EN 15804+A2. For further information about comparability, see EN 15804+A2 and ISO 14025.

Note 2: ITB is a public Research Organization and Notified Body (EC Reg. no 1488) to the European Commission and to other Member States of the European Union designated for the tasks concerning the assessment of building products' performance. ITB acts as the independent, third-party verification organization (ISO 17025/17065/17029). ITB-EPD program is recognized and registered member of The European Platform - Association of EPD program operators and ITB-EPD declarations are registered and stored in the international ECO-PORTAL.

Normative references

- ITB PCR A General Product Category Rules for Construction Products
- EN ISO 10846 Measurement of vibration isolation – Laboratory test methods for resilient elements
- EN ISO 10140 Acoustics – Laboratory measurement of sound insulation of building elements
- EN ISO 717-2:2020 Acoustics – Rating of sound insulation in buildings and of building elements – Part 2: Impact sound insulation
- EN ISO 717-1:2020 Acoustics - Rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation (ISO 717-1:2020)
- ISO 14025:2006, Environmental labels and declarations – Type III environmental declarations – Principles and procedures
- ISO 21930:2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services
- ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines
- ISO 15686-1:2011 Buildings and constructed assets – Service life planning – Part 1: General principles and framework
- ISO 15686-8:2008 Buildings and constructed assets – Service life planning – Part 8: Reference service life and service-life estimation
- EN 15804:2012+A2:2019 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products
- ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification
- EN 15942:2012 Sustainability of construction works – Environmental product declarations – Communication format business-to-business
- ISO 20915:2018 Life cycle inventory calculation methodology for steel products
- World Steel Association 2017 Life Cycle inventory methodology report for steel products
- <https://ecoinvent.org/>

LCA, LCI audit and input data verification
Michał Piasecki, PhD. D.Sc. C.E. Eng.
/Qualified electronic signature/

Head of Thermal Physic, Acoustic and Environment Department
Agnieszka Winkler-Skalna, PhD. C.E. Eng.
/Qualified electronic signature/

Instytut Techniki Budowlanej

00-611 Warsaw, Filtrowa 1

Thermal Physics, Acoustics and Environment Department
02-656 Warsaw, Ksawerów 21

CERTIFICATE № 866/2025

of TYPE III ENVIRONMENTAL DECLARATION

Products:

Stravifloor Deck

Manufacturer:

CDM Stravitec

Reutenebeek 9-11; 3090 Overijse Belgium

confirms the correctness of the data included in the development of
Type III Environmental Declaration and accordance with the requirements of the standard

EN 15804+A2

Sustainability of construction works.

Environmental product declarations.

Core rules for the product category of construction products.

This certificate, issued on 18th December 2025 is valid for 5 years
or until amendment of mentioned Environmental Declaration

Head of the Thermal Physics, Acoustics
and Environment Department

Agnieszka Winkler-Skalna, PhD

Deputy Director
for Research and Innovation

Krzysztof Kućzyński, PhD

Warsaw, December 2025